8 queens puzzle - definitie. Wat is 8 queens puzzle
DICLIB.COM
AI-gebaseerde taaltools
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is 8 queens puzzle - definitie

MATHEMATICAL CHESS PROBLEM OF PLACING EIGHT CHESS QUEENS ON AN 8×8 CHESSBOARD SO THAT NO TWO QUEENS THREATEN EACH OTHER
8 queens problem; 8 queens puzzle; Eight queens problem; 8 queens; N-queens problem; N queens puzzle; N-queens; Eight-queens problem; N queens; N queens problem; Chessboard quiz; Eight queens; Queens problem; Eight queen problem; 8-Queens Problem; N Queens; Nqueens; Queen's independence problem; Eight-queens puzzle; N-Queens problem; Eight Queens puzzle; N-Queens; 8-queens
  • min-conflicts]] solution to 8 queens

8 queens puzzle         
Eight queens puzzle         
The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other; thus, a solution requires that no two queens share the same row, column, or diagonal. There are 92 solutions.
eight queens problem         

Wikipedia

Eight queens puzzle

The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other; thus, a solution requires that no two queens share the same row, column, or diagonal. There are 92 solutions. The problem was first posed in the mid-19th century. In the modern era, it is often used as an example problem for various computer programming techniques.

The eight queens puzzle is a special case of the more general n queens problem of placing n non-attacking queens on an n×n chessboard. Solutions exist for all natural numbers n with the exception of n = 2 and n = 3. Although the exact number of solutions is only known for n ≤ 27, the asymptotic growth rate of the number of solutions is approximately (0.143 n)n.